Understanding Machine Learning: From Theory to Algorithms
SKU: 1107057132 (Updated 2023-01-12)
Price:
US$ 62.99
Description
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.
EAN: 9781107057135
ISBN: 1107057132
Manufacturer: Cambridge University Press
We hope you love the products we recommend! All of products are independently selected by deal-dx editors. Just to let you know, deal-dx may collect a share of sales or other compensation from the links on this page if you decide to shop from them. As an Amazon Associate we earn from qualifying purchases. Prices are accurate and items in stock as of time of publication.
This website uses cookies for the correct display and functionality. Do you also want to take full advantage of the website and accept cookies? About cookies. Accept cookies