Your Python code may run correctly, but you need it to run faster. By exploring the fundamental theory behind design choices, this practical guide helps you gain a deeper understanding of Python’s implementation. You’ll learn how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs.
How can you take advantage of multi-core architectures or clusters? Or build a system that can scale up and down without losing reliability? Experienced Python programmers will learn concrete solutions to these and other issues, along with war stories from companies that use high performance Python for social media analytics, productionized machine learning, and other situations.
Get a better grasp of numpy, Cython, and profilers
Learn how Python abstracts the underlying computer architecture
Use profiling to find bottlenecks in CPU time and memory usage
Write efficient programs by choosing appropriate data structures
Speed up matrix and vector computations
Use tools to compile Python down to machine code
Manage multiple I/O and computational operations concurrently
Convert multiprocessing code to run on a local or remote cluster
Solve large problems while using less RAM
EAN: 9781449361594
ISBN: 1449361595
Manufacturer: O'Reilly Media
We hope you love the products we recommend! All of products are independently selected by deal-dx editors. Just to let you know, deal-dx may collect a share of sales or other compensation from the links on this page if you decide to shop from them. As an Amazon Associate we earn from qualifying purchases. Prices are accurate and items in stock as of time of publication.
This website uses cookies for the correct display and functionality. Do you also want to take full advantage of the website and accept cookies? About cookies. Accept cookies