Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.
You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.
With this book, you’ll learn:
Fundamental concepts and applications of machine learning
Advantages and shortcomings of widely used machine learning algorithms
How to represent data processed by machine learning, including which data aspects to focus on
Advanced methods for model evaluation and parameter tuning
The concept of pipelines for chaining models and encapsulating your workflow
Methods for working with text data, including text-specific processing techniques
Suggestions for improving your machine learning and data science skills
EAN: 9781449369415
ISBN: 1449369413
Manufacturer: O'Reilly Media
We hope you love the products we recommend! All of products are independently selected by deal-dx editors. Just to let you know, deal-dx may collect a share of sales or other compensation from the links on this page if you decide to shop from them. As an Amazon Associate we earn from qualifying purchases. Prices are accurate and items in stock as of time of publication.
This website uses cookies for the correct display and functionality. Do you also want to take full advantage of the website and accept cookies? About cookies. Accept cookies